23 research outputs found

    Phosphate Adsorption from Aqueous Solutions onto Goethite, Bentonite, and Bentonite-Goethite System

    No full text
    The present paper examines the phosphate adsorption from aqueous solutions onto goethite, bentonite, and bentonite-goethite system. The properties of the materials were studied by X-ray diffraction (XRD), attenuated total reflectance (ATR), and NMR spectra and by the measurement of the specific surface area, the point of zero charge (p.z.c.) and the pore-specific volume. ATR and NMR spectra of bentonite and bentonite-goethite system show peaks which correspond to tetrahedrally and octahedrally coordinated Al. The specific surface area of the system differs according to the appropriate method used, while system's p.z.c. is higher than bentonite and lower than goethite. The pore-specific volume of bentonite-goethite system is higher than that of bentonite or goethite. According to XRD spectrum of bentonite-goethite system, goethite coats the (001) spacing of bentonite while the coating of (010) plane of bentonite is limited. The crystallinity of the system decreases and the negative permanent charge increases. Phosphate adsorption experiments took place at different pH (3.8-9.0) and concentrations (40.3-443.5 mu mol L-1) and constant capacitance model was applied to describe adsorption. A ligand exchange mechanism characterizes the model because the charge is divided among adsorbate and adsorbent. The constant capacitance model describes the adsorption mechanism in all examined pH. This model can be utilized in such systems using the surface protonation-dissociation constant of goethite and showing the exact shape of the adsorption isotherms for different pH values. The produced low-cost bentonite-goethite system presents the highest adsorption of P per kilogram of goethite

    Efeito da natureza do eletrólito e da força iônica na energia livre da reação de adsorção de níquel em solos Effect of electrolyte nature and ionic strength in the free energy of nickel adsorption reaction in soils

    No full text
    A adsorção é o principal processo responsável pelo acúmulo de metais pesados na superfície dos colóides do solo. O conhecimento detalhado desse fenômeno pode fornecer subsídios para o aprimoramento das práticas de remediação de solos contaminados. Avaliou-se a energia livre (deltaG0) de adsorção de Ni em amostras superficiais (0,0-0,2 m) e subsuperficiais (na maior expressão do horizonte B) de um Latossolo Vermelho acriférrico típico textura argilosa (LVwf) e de um Nitossolo Vermelho eutroférrico textura muito argilosa (NVef), utilizando-se soluções de NaCl e CaCl2 em três forças iônicas (1,0, 0,1 e 0,01 mol L-1). As amostras de solo receberam 2, 5, 10, 20, 30, 40, 50 e 70 mg dm-3 de Ni, na proporção solo:solução de 1:10. A adsorção de Ni pelos solos foi espontânea, visto que a deltaG0 apresentou valores negativos em todas as concentrações estudadas. Os valores de deltaG0 diminuíram com o aumento da dose de Ni adicionada. O NVef apresentou maior deltaG0 que o LVwf devido, principalmente, às suas características químicas e mineralógicas. Os horizontes superficiais apresentaram, em geral, maior deltaG0 em relação aos subsuperficiais, em razão do elevado teor de matéria orgânica encontrado em superfície. A deltaG0 foi maior para as menores forças iônicas do meio, tanto para CaCl2 quanto para NaCl.<br>The adsorption is the main process responsible for the accumulation of heavy metals in the surface of soil colloids. Detailed knowledge of this phenomenon can contribute to improve the remediation practices for contaminated soil. The free energy (deltaG0) of Ni adsorption was evaluated in surface (0.0-0.2 m) and subsurface (in the maximum expression of B horizon) samples of a clayey Rhodic Acrudox (RA) and a very clayey Eutric Kandiudalf (EK). Ni was added (2, 5, 10, 20, 30, 40, 50, and 70 mg dm-3), in a 1:10 soil:solution ratio. Two background electrolytes (NaCl and CaCl2) and three ionic strengths - IS (1.0; 0.1 and 0.01 mol L-1) were tested. The Ni adsorption reaction was spontaneous, since the deltaG0 values were negative in all concentrations. Values of DG0 decreased with the increasing Ni doses. deltaG0 was higher in the EK presented than in RA, mainly due to its chemical and mineralogical characteristics. In surface samples, deltaG0 was generally higher than in subsurface samples due to their higher organic matter contents. The deltaG0 was higher for solutions with lower IS, regardless of the electrolyte type
    corecore